

MODELS INTEGRATED IN ECOINVENT LCI CALCULATION TOOL FOR CROP PRODUCTION

Prepared by:

Mireille Faist Emmenegger (Quantis) • Clémentine Délerce-Mauris (Quantis) • Christophe Porté (Quantis)

For: ecoinvent

Contact:

Mireille Faist Emmenegger Senior sustainability consultant Mireille.faist@quantis-intl.com

PROJECT INFORMATION

Project title	ECOINVENT LCI CALCULATION TOOL FOR CROP PRODUCTION
Contracting organization	Ecoinvent Association
Liability statement	
Version	Final Report 30 January 2018
Project team	Mireille Faist Emmenegger (mireille.faist@quantis-intl.com) - Senior sustainability consultant Christophe Porté (Christophe.porte@quantis-intl.com) – software architect und tech lead Clémentine Delerce-Maurice (clementine.delerce@quantis- intl.com) – software craftsman Yves Loerincik (yves.loerincik@quantis-intl.com) – IT business unit manager
Client contacts	Emilia Moreno (moreno@ecoinvent.org) – Deputy director Guillaume Bourgault (bourgault@ecoinvent.org) – Project manager

TABLE OF CONTENT

1.	Introduction
2.	Description of the models6
2.1.	Ammonia (NH3)6
2.2.	Nitrous oxide (N2O)7
2.3.	Nitrogen oxides (NO _x , NO, NO ₂)7
2.4.	Nitrate leaching to ground water8
2.5.	Phosphorus emissions to water9
2.5.	1. Phosphate leaching to ground water 10
2.5.	2. Phosphate run-off to surface water10
2.5.	3. Phosphorus emissions through water erosion to surface water
2.6.	Calculation of BOD5, COD, DOC and TOC (emissions to groundwater)14
2.7.	Heavy metals emissions to agricultural soil, surface water and ground water
2.8.	Carbon dioxide (CO ₂) emissions after urea or lime applications
2.9.	Land transformation and occupation 21
2.9.	1. Land transformation
2.9.	1.1. Definitions: direct and indirect land use change21
2.9.	1.2. Land use change from crop production21
2.9.	2. Land occupation
2.9.	2.1. Definition
2.9.	2.2. Land management change effects on soil carbon23
2.10). Pesticide emissions
2.11	. Irrigation24
2.12	. Carbon uptake by plants
3.	References

1. Introduction

This document describes the models used to calculate the emissions from field activities as implemented in the ecoinvent LCI calculation tool for crop production. These models are aligned with those used in the World Food Life Cycle Database (WFLDB) as well as the World Apparel and Footwear Life Cycle Database (WALDB) and are also valid for the agricultural activities in the ecoinvent database. The texts below are taken partly from the guidelines of the WFLDB (Nemecek et al. 2015) but are repeated here for more convenience.

Model	source	Chapter	
Ammonia (NH3) from mineral fertilizers application and manure spreading	(EEA (European Environment Agency) 2016)	2.1	
Nitrous oxide (N2O)	(IPCC 2006a) Tier 1 for crop production	2.2	
Nitrogen oxides (NOx, NO, NO2)	(EEA (European 2.3 Environment Agency) 2016)		
Nitrate leaching (NO3) (SQCB-NO3 model)	(Faist Emmenegger et al. 2009)	2.4	
Phosphorus (PO4) to water (SALCA-P model)	(Prasuhn 2006)	2.5	
Erosion	(Faist Emmenegger et al. 2009)/ (Bos et al. 2016)	2.5.3	
Calculation of BOD5, COD, DOC et TOC (emissions to groundwater)		2.6	
Heavy metals to agricultural soil, surface water and groundwater (SALCA-heavy metal model)	(Freiermuth 2006)	2.7	
Carbon dioxide from urea or lime application	(Eggleston et al. 2006)	2.8	
Carbon dioxide, from land transformation	adaptation from Blonk consultants LUC tool, with link to ecoinvent v3 "land tenure" processes (compliant with LEAP and PAS 2050)	2.9	

Pesticides				2.10
Water emissions from irrigation	(Lévová 2012)	and	Pfister	2.11
Carbon dioxide uptake				2.11

These models result in following emissions:

- Emissions to air (non-urban air or from high stacks): Ammonia (NH₃) Dinitrogen monoxide or nitrous oxide (N₂O) Nitrogen oxides (NO_x) Methane, biogenic (CH₄) Carbon dioxide, biogenic Carbon dioxide, fossil Carbon dioxide, from land transformation
 Emissions to surface water: Phosphorus, surface water (P from erosion)
 - Phosphorus, surface water (P from erosion) Phosphate, surface water (PO₄³⁻ from run-off) Heavy metals: Cadmium (Cd), Chromium (Cr), Copper (Cu), Lead (Pb), Mercury (Hg), Nickel (Ni) and Zinc (Zn)
- Emissions to groundwater: Nitrate (NO₃⁻) Phosphate (PO₄³⁻) Heavy metals: Cadmium (Cd), Chromium (Cr), Copper (Cu), Lead (Pb), Mercury (Hg), Nickel (Ni) and Zinc (Zn)
- Emissions to agricultural soil: Heavy metals: Cadmium (Cd), Chromium (Cr), Copper (Cu), Lead (Pb), Mercury (Hg), Nickel (Ni) and Zinc (Zn)
 Pesticides (if any applied)¹

2. Description of the models

2.1. Ammonia (NH3)

Several methods are available for the estimation of NH3 emissions. The most widespread basis are the EMEP/EAA guidelines from the European Environment Agency, which are used to establish national emission inventories. The latest update of the methodology has been published in 2016 (EEA (European Environment Agency) 2016). The same methodology is also used in the AGRIBALYSE database (Koch et al. 2014), with the difference that in AGRIBALYSE emission factors are taken from the EMEP/CORINAIR guidelines 2006 (EEA (European Environment Agency) 2016), which represent a simplified approach. The ecoinvent V3.0 uses the Swiss Agrammon model for Swiss agricultural inventories, which is similar, but more detailed especially in the area of emissions from animal husbandry. The Agrammon model is a Tier-3 methodology for Switzerland and provides a number of correction factors, which can be used to represent specific situations. In the international context of the Ecoinvent LCI calculation tool for crop production, the EMEP/EAA guidelines are followed.

The emission factors for mineral fertiliser are taken from the EMEP guidelines 2016 (EEA (European Environment Agency) 2016).

	cool climat	te (cf. IPCC 06)	temperat (cf. IPC	e climate C 2006)	warm cli IPCC 2	mate (cf. 2006)
Fertilizer type (m)	EFa	EFb	EFa	EFb	EFa	EFb
	kgN/kg N	kgN/kg N	kgN/kg N	kgN/kg N	kgN/kg N	kgN/kg N
	soil	soil pH>7	soil	soil pH>7	soil	soil pH>7
	pH<=7		pH<=7		pH<=7	
Ammonium sulphate	0.07	0.14	0.08	0.14	0.09	0.17
(AS)						
Ammonium nitrate (AN)	0.01	0.03	0.01	0.03	0.02	0.03
Calcium ammonium nitrate (CAN)	0.01	0.01	0.01	0.01	0.01	0.02
Anhydrous ammonia	0.02	0.03	0.02	0.03	0.02	0.04
Urea	0.13	0.14	0.13	0.14	0.16	0.17
Urea ammonium nitrate (UAN)	0.08	0.08	0.08	0.08	0.10	0.10
Di ammonium phosphate (DAP)	0.04	0.07	0.04	0.08	0.05	0.10
Mono ammonium phosphate (MAP)	0.04	0.07	0.04	0.08	0.05	0.10
Other complex NK, NPK fertilizer	0.04	0.07	0.06	0.08	0.05	0.10
Urea ammonium sulphate (UAS)	0.13	0.14	0.13	0.14	0.16	0.17

Tab. 1: Emission factors for NH3 after the application of mineral N fertiliser ((EEA (European Environment Agency) 2016), 3.D Table 3-2) in function of the soil pH.

Source: EMEP guidebook 20(EEA (European Environment Agency) 2016)16, part 3D: Crop production and agricultural soils, Table 3.2

The emission is calculated as follows:

NH₃ = $17/14 * \sum_{m=1}^{M} (EFa_m * p + EFb_m * (1-p)) * N_{min}$ where

NH₃ = ammonia emission after mineral fertiliser application [kg NH₃]

m = fertiliser type (M = number of fertiliser types)

 EFa_m = emission factor on soils with pH<=7 [kg NH₃-N/kg N] (see Tab. 1)

 EFb_m = emission factor on soils with pH>7 [kg NH₃-N/kg N] (see Tab. 1)

p = fraction of soils with pH <= 7 [%/100]

N_{min} = mineral fertiliser application [kg N]

The conversion factor from N to NH_3 is 17/14.

Dinitrogen monoxide or nitrous oxide (N₂O)

2.2. Nitrous oxide (N2O)

Nitrous oxide (N_2O) is produced during nitrification and denitrification processes and is a very powerful greenhouse gas. For nitrous oxide we are following IPCC guidelines (Eggleston et al. 2006) Tier 1 for crop production.

 $N_2O = 44/28 * (0.01 (N_{tot} + N_{cr} + N_{som} + 14/17*NH_3 + 14/46*NO_x) + 0.0075 * 14/62*NO_3)$

- N_2O = emission of N_2O [kg N_2O ha⁻¹]
- N_{tot} = total nitrogen in mineral and organic fertiliser [kg N ha⁻¹]
- N_{cr} = nitrogen contained in the crop residues [kg N ha⁻¹]
- N_{som} = nitrogen from mineralisation of soil organic matter [kg N ha⁻¹]
- NH_3 = losses of nitrogen in the form of ammonia [kg NH_3 ha⁻¹]
- NO_x = losses of nitrogen in the form of nitrogen oxides [kg NO_2 ha⁻¹].
- NO_3 = losses of nitrogen in the form of nitrate [kg NO_3 ha⁻¹].

 N_2O released during decomposition of organic matter in the soil after land use change is a further source of emissions.

For flooded rice, the emission factor for direct emissions of N_2O is 0.003 (IPCC, 2006, Table 11.1, EF_{1FR}) instead of 0.01.

2.3. Nitrogen oxides (NO_x, NO, NO₂)

Nitrogen oxides stem mainly from the nitrification process. The importance of NO_x emissions from N fertiliser is relatively small compared to other sources. Therefore simple emission factors are used. The emission factor for the application of mineral and organic fertiliser (including animal manure) is:

0.018667 kg NO_x-N/kg N applied (EEA, 2016, 3.D Tab. 3-1, converted from NO to N: 0.04*14/30=0.018667)

The emission is calculated after subtraction of the N volatilized as NH₃.

EEA (2016) expresses the emissions of NO_x as NO, while in ecoinvent NO_x is calculated as NO_2 . In order to be compatible with the latter, the emissions will be converted to NO_2 . The conversion factor from N to NO_2 is 46/14.

2.4. Nitrate leaching to ground water

The SQCB-NO3, a geographically unspecific and simple model, is used (Faist Emmenegger et al. 2009).

Gaseous losses of NH_3 , NO_x and N_2O are subtracted from the amount of N applied in the fertilisers prior to the calculation of nitrate leaching.

The SQCB-NO₃ model is reported in Faist Emmenegger *et al.* (2009) and is an adaption of a formula developed by de Willigen (De Willigen 2000) and used and validated by Roy *et al.* (Roy et al. 2003). The formula calculates the leaching of NO₃-N and is a simple regression model of the form:

$$N = 21.37 + \frac{P}{c*L} \left[0.0037*S + 0.0000601*N_{org} - 0.00362*U \right]$$

where:

Ν	= leached NO ₃ -N	[kg N/(ha*year)]
Ρ	= precipitation + irrigation	[mm/year]
с	= clay content	[%]
L	= rooting depth	[m]
S	= nitrogen supply through fertiliser	[kg N/ha]
N_{org}	= nitrogen in organic matter	[kg N/ha]
U	= nitrogen uptake by crop	[kg N/ha]

The SQCB model provides relatively simple approaches to assess most of the required input parameters. P and C_{org} are determined through the ecozone in which the crop is produced. The ecozones for the whole globe are defined and presented as maps in FAO (2001). Fix values for carbon content in the upper 30 cm of soil and for annual precipitation are assigned to each country. More specific values can be used, where available. The carbon content in tonnes per 3000 m³ (1 ha [area] * 30 cm [depth]) is converted into mass fraction by the formula:

 C_{org} [%] = C_{org} [t/3000 m³] * (1 / 1.3 t m⁻³) * 100

In case of irrigation, the amount of irrigation water [mm] is added to the precipitation in order to obtain the parameter P. The amount of irrigation water is calculated according to section 2.11.

The annual precipitation and the irrigation are inputs from the user.

The carbon content is an average value per country, the clay content c is defined by the average soil texture of a country (see Annex 1).

The rooting depth for several crops is given in the SQCB report by Faist Emmenegger (2009). The missing values were taken from other literature. Values and sources are presented in the Annex 2.

The nitrogen supply S is calculated from the total N application of mineral fertilisers and of soluble N in organic fertilisers after subtraction of the gaseous losses in form of NH_3 , NO_x and N_2O . The original model sources (de Willigen, 2000; Roy *et al.* 2003) do not make a clear distinction between mineral and organic fertilisers. Since only the mineral (soluble) form of N is prone to leaching and for reasons of consistency with the SALCA-NO₃ model, only the soluble part of N in organic fertilisers is counted.

The nitrogen uptake U can be taken from Faist Emmenegger *et al.* (2009) or other sources (e.g. Flisch et al. 2009) and are summarized in the annex 3. Linear adjustments must be made for different yields. In the case of legumes, only 40% of the values given in the SQCB report are considered as N uptake in order to reflect the fact, that the remaining 60% are fixed from the air and are not directly relevant to the balance of nitrogen supplied through fertilisers and mineralised from the soil organic matter (Schmid *et al.* 2000).

To calculate the organic nitrogen N_{org} in soil [kg N/ha] from the soil organic carbon content C_{org} [%] the following quantities are needed:

• soil volume V [m³/ha]

V is taken to be 5000 m^3 , which means that the upper 50 cm of soil are considered (according to pers. comm. J. Leifeld, ART, 2011), assuming the same carbon content for 30-50 cm depth as calculated above for 0-30 cm depth.

• bulk density D_b [kg/m³]

Bulk density is taken to be 1300 kg/m³, which is the standard value from the SQCB report.

• C/N ratio r_{C/N} [dimensionless]

The C/N ratio is taken to be 11. This is the mean value of the range (10-12) determined through literature research (F. Scheffer 2002; IPCC 2006b; N.H.Batjes 2008) and consultation of experts (pers. comm. J. Leitfeld, Agroscope).

• ratio of N_{org} to N_{tot} (total soil nitrogen) r_{Norg} [dimensionless]

The C/N ratio expresses the ratio of Corg and Ntot. The ratio rNorg is needed calculate Norg from

 N_{tot} , which is calculated in a first step applying the C/N ratio. r_{Norg} is assumed to be 0.85 (Scheffer 2002).

• N_{org} is calculated by the formula:

$$N_{org} = \left(\frac{Corg}{100} \times V \times D_b\right) \div r_{C/N} \times r_{Norg}$$

 N_{org} is the mass of organic nitrogen contained in the upper 50 cm of soil. Naturally only a fraction of this mass is mineralised and, hence, available for uptake by plants and leaching to the ground water. This fraction is determined by the mineralisation rate, which is 1.6% here and implicitly included in the regression coefficient (0.0000601) of the term N_{org} .

2.5. Phosphorus emissions to water

Three different paths of phosphorus emissions to water are distinguished:

- leaching of soluble phosphate (PO₄) to ground water (inventoried as "phosphate, to ground water"),
- run-off of soluble phosphate to surface water (inventoried as "phosphate, to surface water"),

 water erosion of soil particles containing phosphorus (inventoried as "phosphorus, to surface water").

Erosion by wind is not considered in these guidelines. However, in cases where wind erosion is important, it should be taken into account.

The emission models SALCA-P (Prasuhn 2006) developed by Agroscope are applied. The following factors are considered for the calculation of P emissions:

- type of land use
- type of fertiliser
- quantity of P in fertiliser
- type and duration of soil cover for the calculation of the soil erosion (C-factor).

For other factors, considered in the model SALCA-P, default values are used (Prasuhn 2006):

- distance to next river or lake
- topography
- chemical and physical soil properties
- drainage.

The model takes soil erosion, surface run-off and drainage losses to surface water and leaching to ground water into account.

The key factors of the model are listed below.

2.5.1. Phosphate leaching to ground water

P leaching to the ground water was estimated as an average leaching, corrected by P-fertilization:

P _{gw} =	P _{gwl} * F _{gw}
P _{gw} =	quantity of P leached to ground water [kg/(ha*a)]
P _{gwl} =	average quantity of P leached to ground water for a land use category [kg/(ha*a)], which is: 0.07 kg P/(ha*a) for arable land and 0.06 kg P/(ha*a) for permanent pastures and meadows.
F _{gw} =	correction factor for fertilization by slurry [dimensionless]
$F_{gw} =$	1 + 0.2/80*P ₂ O _{5sl}
$P_2O_{5sl} =$	quantity of P_2O_5 contained in the slurry or liquid sewage sludge [kg/ha]. The values of P_2O_5 -content were taken from Flisch <i>et al.</i> (2009) or other national sources.

2.5.2. Phosphate run-off to surface water

Run-off to surface water was calculated in a similar way to leaching to ground water:

P _{ro} =	P _{rol} * F _{ro}
P _{ro} =	quantity of P lost through run-off to rivers [kg/(ha*a)]
P _{rol} =	 average quantity of P lost through run-off for a land use category [kg/(ha*a)], which is 0.175 kg P/(ha*a) for arable land, 0.25 kg P/(ha*a) for intensive permanent pastures and meadows and 0.15 kg P/(ha*a) for extensive permanent pastures and meadows

F_{ro} = correction factor for fertilization with P [dimensionless], calculated as:

$$F_{ro} = 1 + 0.2/80 * P_2O_{5min} + 0.7/80 * P_2O_{5sl} + 0.4/80 * P_2O_{5man}$$

$$P_2O_{5min} = \text{quantity of } P_2O_5 \text{ contained in mineral fertiliser} \qquad [kg/ha]$$

$$P_2O_{5sl} = \text{quantity of } P_2O_5 \text{ contained in slurry or liquid sewage sludge} \qquad [kg/ha]$$

$$P_2O_{5man} = \text{quantity of } P_2O_5 \text{ contained in solid manure} \qquad [kg/ha]$$

The values of P_2O_5 -content for slurry and manure were taken from Flisch *et al.* (2009) or other national sources.

2.5.3. Phosphorus emissions through water erosion to surface water

P emissions through erosion of particulate phosphorous to surface water were calculated as follows:

- $P_{er} = S_{er} * P_{cs} * F_r * F_{erw}$
- P_{er} = quantity of P emitted through erosion to rivers [kg P/(ha*a)]
- S_{er} = quantity of soil eroded [kg/(ha*a)]
- P_{cs} = P content in the top soil [kg P/kg soil]. The average value of 0.00095 kg/kg was used.
- F_r = enrichment factor for P (-). The average value of 1.86 was used (Wilke and Schaub 1996). This factor takes account of the fact that the eroded soil particles contain more P than the average soil.
- F_{erw} = fraction of the eroded soil that reaches the river [dimensionless]. The average value of 0.2 was used.

The amount of eroded soil S_{er} is calculated using the universal soil loss equation as described in Faist Emmenegger *et al.* (2009), where the USLE (Universal Soil Loss Equation, Wischmeier and Smith 1978) is expressed as:

S_{er} = 1000 * R * k * LS * c1 * c2 * P

where

- S_{er} = Potential long term annual soil loss [kg ha⁻¹ yr⁻¹]
- R = Erosivity factor [MJ mm $ha^{-1} h^{-1} yr^{-1}$]
- $k = Erodibility factor [t h MJ^{-1} mm^{-1}]$
- LS = Slope factor [-]
- c1 = Crop factor [-]
- c2= Tillage factor [-]
- P = Practice factor [-]

The erosivity factor R is computed according to the LANCA methodology (Ulrike Bos, Rafael Horn, Tabea Beck, Jan Paul Lindner 2016, LANCA characterisation factors for Life Cycle Impact Assessment, Version 2.0), which compiles a set of formula depending on the climate zone.

Climate zone	Equation	Source
Equatorial fully humid	= -3172 + 7.562 * P	(Mikhailava et al. 1995)
Equatorial monsoonal	= -3172 + 7.562 * P	(Mikhailava et al. 1995)
Equatorial summer dry	= -669.3 + 7 * P - 2.719 * E	(Mikhailava et al. 1995)
Equatorial winter dry	= -3172 + 7.562 * P	(Mikhailava et al. 1995)
Arid desert cold arid	= 0.809 * P $^{0.957}$ + 0.000189 * S $^{6.285}$	(Naipal et al. 2015)
Arid desert hot arid	$= 0.0438 * P^{1.61}$	(Yu and Rosewell 1996)
Arid steppe cold arid	$= 10^{(0.0793+0.887 + \log(P) + 1.892 + \log(S) - 0.429 + \log(E))}$	(Naipal et al. 2015)
Arid steppe hot arid	$= 10^{(-7.72 + 1.595 * \log(P) + 2.068 * \log(S))}$	(Naipal et al. 2015)
Warm temperate fully humid hot summer	$= 10^{(0.524+0.462 * \log(P) + 1.97 * \log(S) - 0.106 * \log(E))}$	(Naipal et al. 2015)
Warm temperate fully humid warm summer	$= 10^{(-7.694+4.1407 * \log(P) - 2.586 * \log(S))}$	(Naipal et al. 2015)
Warm temperate fully humid cold summer	$= 10^{(-7.694+4.1407 + \log(P) - 2.586 + \log(S))}$	(Naipal et al. 2015)
Warm temperate summer dry hot summer	= -944 + 3.08 * P	(Cooper 2011)
Warm temperate summer dry warm summer	$= 98.35 + 3.55 * 10^{-4} * P^{1.987}$	(Naipal et al. 2015)
Warm temperate summer dry cold summer	= -944 + 3.08 * P	(Cooper 2011)
Warm temperate winter dry hot summer	= -3172 + 7.562 * P	(Mikhailava et al. 1995)

 Table 1: R-factor approximation equations for the regarded climate zones. Source. Bos et al. 2016.

Climate zone	Equation	Source
Warm temperate winter dry warm summer	= -3172 + 7.562 * P	(Mikhailava et al. 1995)
Warm temperate winter dry cold summer	= -3172 + 7.562 * P	(Mikhailava et al. 1995)
Snow fully humid hot summer	$= 10^{(-1.99+0.737 + \log(P) + 2.033 + \log(S))}$	(Naipal et al. 2015)
Snow fully humid warm summer	$= 10^{(-0.5+0.266 * \log(P)+3.1 * \log(S)-0.131 * \log(E))}$	(Naipal et al. 2015)
Snow fully humid cold summer	$= 10^{(-1.259+3.862 * \log(S))}$	(Naipal et al. 2015)
Snow fully humid extremely continental	$= 10^{(-1.259+3.862 * \log(S))}$	(Naipal et al. 2015)
Snow summer dry hot summer	$= 10^{(1.882 + 0.819 * \log(P))}$	(Naipal et al. 2015)
Snow summer dry warm summer	$= 10^{(2.166+0.494 * \log{(P)})}$	(Naipal et al. 2015)
Snow summer dry cold summer	$= 10^{(4.416 + 0.0594 * \log(P))}$	(Naipal et al. 2015)
Snow summer dry extremely continental	$= 10^{(4.416 + 0.0594 * \log(P))}$	(Naipal et al. 2015)
Snow winter dry hot summer	= 38.5 + 0.35 * P	(Lee and Lee 2006)
Snow winter dry warm summer	= 38.5 + 0.35 * P	(Lee and Lee 2006)
Snow winter dry cold summer	$= 10^{(1.882 + 0.819 + \log(P))}$	(Naipal et al. 2015)
Snow winter dry extremely continental	$= 10^{(1.882 + 0.819 + \log(P))}$	(Naipal et al. 2015)
Polar polar frost	$= 10^{(-10.66 + 2.43 + \log(P))}$	(Naipal et al. 2015)
Polar polar tundra	$= 10^{(-10.66 + 2.43 + \log(P))}$	(Naipal et al. 2015)

Table 2: R-factor approximation equations for the regarded climate zones (followed). Source. Bos et al. 2016.

Where:

P = Average annual precipitation [mm/year]

E = Mean elevation [m]

S = Average annual precipitation / number wet days [mm/day]

The climate zone is entered by the user based on a map; the number of wet days per year is also given by the user.

The LS factor computation is based on the original equation described in Wischmeier and Smith (1978). The only adjustment consists in transforming the input data from the SI (International System

of Units) units to the American metric system. Indeed this formula requires length in feet whereas the user types it in in meters.

$$\left[\left(\frac{L_{i}*3.28083}{72.6}\right)^{0.2}*(65.41*(\sin(\frac{S_{i}}{100}))^{2}+4.56*(\sin(\frac{S_{i}}{100}))+0.065) \quad if \qquad S_{i}<1\%\right]$$

$$LS_{i} = \begin{cases} \left(\frac{L_{i} * 3.28083}{72.6}\right)^{0.3} * (65.41*(\sin(\frac{S_{i}}{100}))^{2} + 4.56*(\sin(\frac{S_{i}}{100})) + 0.065) & if \quad 1\% \le S_{i} < 3.5\% \end{cases}$$

$$\left(\frac{L_{i} * 3.28083}{72.6} \right)^{0.4} * (65.41 * (\sin(\frac{S_{i}}{100}))^{2} + 4.56 * (\sin(\frac{S_{i}}{100})) + 0.065) \quad if \quad 3.5\% \le S_{i} \le 5\% \\ \left(\frac{L_{i} * 3.28083}{72.6} \right)^{0.5} * (65.41 * (\sin(\frac{S_{i}}{100}))^{2} + 4.56 * (\sin(\frac{S_{i}}{100})) + 0.065) \quad if \quad S_{i} > 5\%$$

Where S_i is the slope of the segment i expressed in %, L_i is the length of the segment i expressed in meters and LS_i is the partial slope factor for the segment i. The factor 3.28083 is a conversion factor from meter to feet and 100 is a conversion factor related to the fact that the slope is expressed in %.

LS is then computed as the sum of all LS_i:

$$LS = \sum_{i=1}^{n} LS_{i}$$

Where n is the number of segments. Here, only one segment will be considered as default.

The K factor is calculated either from the Table 7-2 given by Faist Emmenegger *et al.* (2009) or taken from Table 5 in Panagos et al. (2014) for European countries and Table 4 for other countries, where the information about the soil class is not available (only the clay and sand content needed).

The c1 factor is taken from Table 7-3, c2 the factor from 7-4 and the P factor from Table 7-5 in Faist Emmenegger *et al.* (2009) or from other literature.

2.6. Calculation of BOD5, COD, DOC and TOC (emissions to groundwater)

The BOD5, COD, DOC and TOC emissions in groundwater are calculated as follow:

DOC = TOC = COD/2.7

BOD5 = 0.5*COD (for untreated waste water (default case), for other cases, see below)

The BOD5/COD ratio depends on the biodegradability of the organic material.

- At full biodegradability BOD = COD.
- For domestic wastewater values up to BOD5 = 0.75*COD can be found
- For food industries BOD5 = 0.9*COD.
- For wastewaters with low nutrient content relative to carbon, such as from chemical plants and in cleaned wastewaters, BOD5 = 0.2*COD and when having passed a nutrient elimination step BOD5 = 0.05*COD

2.7. Heavy metals emissions to agricultural soil, surface water and ground water

According to an analysis of the heavy metals² that are causing problems in agriculture (Kühnholz 2001), the following seven were selected:

- Cadmium (Cd)
- Chromium (Cr)
- Copper (Cu)
- Lead (Pb)
- Mercury (Hg)
- Nickel (Ni)
- Zinc (Zn)

No distinction is made between CrII and CrIII, only the sum of Cr flows is considered.

Typical heavy-metal content of agricultural and non-agricultural soils is given by Desaules & Dahinden (2000). Kühnholz (2001) gives a comparison of different emission factors and methods for calculating heavy metal balances.

The heavy metal emissions are calculated by SALCA-heavy metal (Freiermuth 2006). Inputs into farm land and outputs to surface water and groundwater are calculated on the basis of heavy metal input from seed, fertiliser, plant protection products and deposition from the air. Crop residues left on the field are not considered, since they do not leave the system. Average heavy metal contents for arable land, pastures, meadows and horticultural crops are used to calculate the amounts of heavy metals exported by soil erosion. The amount of eroded soil is the same as calculated for the P-emissions (see above). An allocation factor is used to distinguish between diffuse and agriculture-related introduction (Freiermuth 2006).

Three types of emissions are considered:

- Leaching of heavy metals to the ground water (always positive values)
- Emissions of heavy metals into surface waters through erosion of soil particles (always positive values)
- Emissions of heavy metals to agricultural soil (positive or negative values according to the results of the balance).

The following sources are used to calculate heavy-metal contents:

Mineral fertiliser: Desaules & Studer (1993), p. 153), see Tab. 6,

² Heavy metals are metals with a specific weight greater than 5 g/cm³ (Source: http://chamieta.about.com/od/chamieta/glassap/g/Hapay/Matal_Dofinition.htm

http://chemistry.about.com/od/chemistryglossary/g/Heavy-Metal-Definition.htm).

- Farmyard manure: Menzi & Kessler (1998) and Desaules & Studer (1993), p. 152), see Tab. 7,
- pesticides: FOAG (2014),
- biomass (seed and products from plant production): Houba & Uittenbogaard (1994, 1995, 1996 & 1997), von Steiger & Baccini (1990) and Wolfensberger & Dinkel (1997); Bennett et al. (2000) & for Nickel Teherani (1987) for rice; generic mean of biomass for cotton due to lack of data with mass allocation to fibre and seed (Freiermuth 2006); see Tab. 5.

Heavy metal emissions into ground and surface water (in case of drainage) are calculated with constant leaching rates as:

 $M_{\text{leach i}} = m_{\text{leach i}} * A_i$

M_{leach i} agricultural related heavy metal *i* emission

- m_{leach i} average amount of heavy metal emission (Tab. 2)
- A_i allocation factor for the share of agricultural inputs in the total inputs for heavy metal *i*

Tab. 2: Heavy metal leaching to groundwater according to Wolfensberger & Dinkel (1997).

Leaching	Cd	Cu	Zn	Pb	Ni	Cr	Hg
mg/ha/year	50	3600	33000	600	n.a.	21200	1.3

Heavy metal emissions through erosion are calculated as follows:

 $M_{erosion i} = c_{tot i} * S_{er} * a * f_{erosion} * A_i$

- M_{erosion} agricultural related heavy metal emissions through erosion [kg ha⁻¹ a⁻¹]
- c_{tot i} total heavy metal content in the soil (Keller & Desaules 2001, see Tab. 3 [kg/kg])
- S_{er} amount of soil erosion (see section 2.5.3) [kg ha⁻¹ a⁻¹]
- a accumulation factor 1.86 (according to Wilke & Schaub (1996) for P) [-]
- f_{erosion} erosion factor considering the distance to river or lakes with an average value of 0.2 (considers only the fraction of the soil that reaches the water body, the rest is deposited in the field) [dimensionless]
- A_i allocation factor for the share of agricultural inputs in the total inputs for heavy metal *i* [dimensionless]

2001).								
Land use	Cd	Cu	Zn	Pb	Ni	Cr	Hg	
	[mg/kg]							
Permanent grassland	0.309	18.3	64.6	24.6	22.3	24.0	0.088	
Arable land	0.24	20.1	49.6	19.5	23.0	24.1	0.073	
Horticultural crops	0.307	39.2	70.1	24.9	24.8	27.0	0.077	

Tab. 3: Average heavy metal contents in mg per kg soil for Switzerland (from Keller & Desaules,

The original values for Switzerland are used as default (Tab. 3).

The balance of all inputs into the soil (fertilisers, pesticides, seed and deposition) and outputs from the soil (exported biomass, leaching and erosion), multiplied by the allocation factor is calculated as an emission to agricultural soil.

 $M_{soil i} = (\Sigma inputs_i - \Sigma outputs_i) * A_i$

If the uptake of heavy metals by plants and the emissions from leaching and erosion exceed the inputs, a negative balance will result. This happens in particular if a large biomass is harvested and the inputs are low. The heavy metals are transferred to the biomass and have to be appropriately considered in the subsequent life cycle modelling (i.e. returned to the soil, transferred to the water or to landfills at the end of the life cycle).

A certain fraction of the heavy metal input into the soil stems from atmospheric deposition. The deposition would occur even without any agricultural production and is therefore not charged to the latter. An allocation factor accounts for this. The farmer is therefore responsible for a part of the inputs only (the rest stems mainly from other economic sectors), therefore only a part of the emissions is calculated in the inventory.

A_i = M_{agro i} / (M_{agro i} + M_{deposition i})

A_i allocation factor for the share of agricultural inputs in the total inputs for heavy metal i

M_{agro i} total input of heavy metal from agricultural production in mg/(ha*year) (fertiliser + seeds + pesticides)

M_{deposition i} total input of heavy metal from atmospheric deposition in mg/(ha*year) (Tab. 4)

In cases, where $M_{agroi} = 0$, i.e. no agricultural inputs to the soil occur, A_i also becomes 0.

	Cd	Cu	Zn	Pb	Ni	Cr	Hg
Deposition [mg/ha/year]	700	2400	90400	18700	5475	3650	50

Tab. 4: Heavy metal deposition (see Freiermuth 2006).

Element	Cd	Cu	Zn	Pb	Ni	Cr	Hg
Unit	[mg/kg DM]						
Generic mean	0.10	6.6	32.0	0.54	1.04	0.55	0.04
Grass / Hay	0.13	8.6	40	1.2	1.68	1.09	0.15
Maize grains	0.03	2.5	21.5	0.3	1.16	0.32	0
Maize silage	0.1	5	34.5	1.61	0.48	0.7	0.01
Wheat grains	0.1	3.3	21.1	0.2	0.2	0.2	0.01
Wheat straw	0.2	2.5	9.6	0.6	0.6	0.7	NA
Barley grains	0.03	4.3	26.6	0.2	0.1	0.1	NA
Barley straw	0.1	4.8	11.1	0.6	0.8	1.2	NA
Rye straw	0.1	3.2	13	0.4	0.7	0.5	NA
Potatoes	0.04	6.45	15	0.55	0.33	0.57	0.09
Rape seed	1.6	3.3	48	5.25	2.6	0.5	0.1
Faba beans	0.04	6	30.1	0.87	1.3	0.69	0
Soya beans	0.06	15.1	47.7	0.08	5.32	0.52	0
Protein peas	0.09	10	73	0.16	0.83	0.32	0.01
Sugar beets	0.4	12	36.4	1.16	1.08	1.775	0.095
Rice grains	0.02	5.27	43.9	0.96	0.97	0.49	NA

(1990). 110 44				(=====):		
Mineral fortilisers	Cd	Cu	Zn	Pb	Ni	Cr
(%N/%P2O5/%K2O/%Mg)	[mg/kg	[mg/kg	[mg/kg	[mg/kg	[mg/kg	[mg/kg
(/614) /6F 203/ /6K20/ /6Wg)	nutrient]	nutrient]	nutrient]	nutrient]	nutrient]	nutrient]
Urea (46/0/0) kg N	0.11	13.04	95.65	2.39	4.35	4.35
Calcium ammonium nitrate						
(20/0/0) kg N	0.25	60.00	155.00	5.50	90.00	10.00
Ammonium nitrate (27.5/0/0) kg						
Ν	0.18	25.45	181.82	6.91	47.27	14.55
Ammonium sulphate (21/0/0) kg						
Ν	0.24	19.05	142.86	5.24	8.57	9.52
Calcium ammonium nitrate						
(27/0/0) kg N	0.19	8.52	100.00	5.93	12.59	2.96
Magnesium ammonium nitrate						
(23/0/0/5) kg N	0.43	56.52	4.35	4.35	21.74	6.09
Generic mean N	0.21	22.25	121.43	5.37	17.17	7.81
Triple superphosphate (0/46/0)						
kg P2O5	113.04	97.83	650.00	7.61	95.65	567.39
Superphosphate (0/19/0) kg						
P2O5	52.63	121.05	852.63	578.95	105.26	342.11
Thomas meal (0/16/0) kg P2O5	1.56	250.00	425.00	75.00	125.00	12212.50
Hyperphosphate/raw phosphate						
(0/26/0) kg P2O5	50.00	115.38	915.38	23.85	76.92	611.54
Generic mean P	51.32	118.22	751.32	49.42	100.46	589.46
Potassium chloride (KCl) (0/0/60)						
kg K2O	0.10	8.33	76.67	9.17	3.50	3.33
Potassium sulphate (0/0/50) kg						
K2O	0.10	4.00	64.00	6.60	1.60	4.00
Raw potassium (0/0/26/5) kg						
К2О	0.19	173.08	153.85	11.54	11.54	173.08
Lime kg CaO	0.12	4.00	8.00	3.60	12.20	314.00
Generic mean K	0.11	6.17	70.33	7.88	7.52	88.54

Tab. 6: Heavy-metal contents of mineral fertilisers [mg/kg nutrient] according to Desaules & Studer (1993). No data available on Hg. Source: Freiermuth (2006).

(211) conte	into ji on							-
Farmyard manure	Cd	Cu	Zn	Pb	Ni	Cr	Hg	DM-
								content
Cattle liquid manure	0.18	37.1	162.2	3.77	4.3	3.9	0.4	9.0%
Cattle slurry	0.16	19.1	123.3	2.92	3.1	2.1	0.6	7.5%
Cattle staple manure	0.17	23.9	117.7	3.77	4.3	3.9	0.4	19.0%
Cattle manure form loose housing	0.15	22.0	91.1	2.81	4.3	3.9	0.4	21.0%
Pig liquid manure	0.21	115.3	746.5	1.76	8.6	6.7	0.8	5.0%
Pig solid manure	0.21	115.3	746.5	1.76	8.6	6.7	0.8	27.0%
Litter from broilers	0.29	43.8	349.2	2.92	40.0	10.0	0.2	65.0%
Litter from belts from laying hens	0.25	39.6	468.4	2.24	7.9	5.5	0.2	30.0%
Litter from deep pits from laying								
hens	0.25	39.6	468.4	2.24	7.9	5.5	0.2	45.0%

Tab. 7: Heavy-metal contents of farmyard manure and organic fertiliser (mg/kg DM, compiled by Freiermuth 2006 from from Menzi & Kessler (1998) and Desaules & Studer (1993, p. 152)). Dry matter (DM) contents from Walther et al. (2001, Tab. 44).

In some cases, the users want to exclude heavy metal uptake by the biomass from the total heavy metal flows. This can e.g. be the case if an incomplete life cycle is modelled. For this purpose the uptake by the crops is modelled in separate inventories (separated from the inputs). These datasets are called "product, uptake" (e.g. "wheat grains, uptake"). The heavy metal uptake is included as negative emissions into agricultural soil. A switch parameter "heavy_metal_uptake" is introduced allowing exclusion of heavy metal uptake in such situations.

2.8. Carbon dioxide (CO₂) emissions after urea or lime applications

After application of urea and lime, fossil CO_2 is released to the air. The worst-case approach according to IPCC (2006) is followed, so that the total amount of C is considered as released to the air is the form of CO_2 .

For urea, the emission is $1.57 \text{ kg CO}_2/\text{kg Urea-N}^3$.

For limestone (CaCO₃) and dolomite ((Ca Mg)CO₃) the following emission factors apply:

- 12/100 * 44/12 = 0.44 kg CO₂/kg limestone
- 12/92.2 * 44/12 = 0.48 kg CO₂/kg dolomite.

 $^{^3}$ The molecular weight of urea (CH4N2O) is 60, the C content is 12/60, the N content is 28/60, the conversion of C into CO₂ is 44/12, from which follows: 12/60*60/28*44/12=1.57.

2.9. Land transformation and occupation

2.9.1. Land transformation

2.9.1.1. Definitions: direct and indirect land use change

Land transformation is a change from one land use type to another as a result of a human activity. The amount of land transformed is the area required to produce 1 functional unit of a product. Land use change has impacts on soil properties (e.g. carbon content, compaction, nutrients leaching, N_2O emissions among others), on biodiversity, on biotic production (Brandão and Mila i Canals 2012; Koellner et al. 2012; Koellner et al. 2013) and on other environmental aspects such as landscape, albedo and evapotranspiration (Spracklen et al. 2012).

Direct (dLUC) and indirect (iLUC) land use changes are often distinguished. Direct land use change can be defined as a change directly related to the history of the piece of land occupied. Indirect land use change can be defined as a change that appears in a different area than the direct land use as an indirect consequence. Typical example of iLUC is the increase of soybean production in Brazil that forces cattle production to move to other regions, where deforestation tends to increase as a consequence of increased pressure on land (Lapola et al. 2010). There is no international consensus on how to consistently and systematically address LUC in life cycle inventory, despite significant research in the LCA community (Bauen *et al.* 2010; Fritsche *et al.* 2010; Gnansounou *et al.* 2009; Nassar *et al.* 2011; Schmidt 2008; Searchinger *et al.* 2008; Sylvester-Bradley 2008; Tipper *et al.* 2009). Therefore, in the modelling here, no formal difference is made between dLUC and iLUC.

2.9.1.2. Land use change from crop production

In crop production, global land transformation impacts are mainly driven by deforestation of primary forests. However, land use change from secondary forest or grassland to arable land must also be addressed in the inventory. Land use change from perennial to annual crops is also assessed.

LUC from crop production follows the methodology applied in ecoinvent V3.0 (Nemecek et al. 2014)(Wernet et al. 2016), which is based on IPCC (2006) methodology. The quantification of the land use change areas is based on annualized, retrospective data of the last 20 years. All carbon pools are considered for all of the vegetation categories affected (see Tab.8).

In cases where the crop area in the country and its corresponding total land type area have increased in the considered time period, and if the area occupied by the natural ecosystem decreased during the same time period, the direct LUC is considered to be potentially relevant (Milà i Canals *et al.* 2012). Otherwise, LUC from a given land type is irrelevant to the life cycle inventory.

Two alternative approaches for allocating LUC are modelled. Both are country specific.

- 1. Crop-specific approach (default): land use change is allocated to all crops and activities that grew in the last 20 years in a given country, and only to them, according to their respective area increase. Crops which surface decreased are neither attributed any LUC impacts nor credits.
- 2. Shared-responsibility approach: land use change during the last 20 years is evenly distributed among all crops and activities present in the country, based on current area occupied.

For the default allocation, calculation of the area of land transformed per hectare of crop is computed with a Microsoft Excel tool⁴ developed to support the estimates of LUC emissions based on the PAS2050-1/ENVIFOOD protocol approach. This tool uses has been developed by Blonk Consultants in 2013 and has been modified by Quantis to comply with WFLDB's requirements⁵. It uses statistical data for crops production and natural land areas in all countries from 1989 to 2012 (FAOSTAT 2012), as well as for country climates and soil types (EU-JRC 2010c). It has been reviewed and approved by the World Resources Institute (WRI) for use in the GHG Protocol.

To attribute LUC associated with the increase in area of each crop, a time period of 20 years is used for the calculation of the average annual increment. The same time period is applied for the amortisation of the emissions, which is aligned with PAS 2050-1 (BSI 2011a, BSI 2011b), FAO guidelines for feed supply chains (LEAP 2014) and ecoinvent V3.0 (Nemecek *et al.* 2014).

Four kinds of carbon pools – aboveground biomass (AGB), belowground biomass (BGB), dead organic matter (DOM) and soil organic carbon (SOC) – and four categories of vegetation – primary forest, secondary forest, grassland and perennial cropland – are considered. The values for the relevant carbon pools are taken from the IPCC Agriculture, Forestry and Other Land Use (AFOLU) report (IPCC 2006) and FAO (2010), Annex 3, Table 11.

For land transformation from primary forest and secondary forest, it is assumed that 20% of the AGB is burned and 8 % harvested (Houghton *et al.* 2000). The BGB, the DOM and the remaining slash from the AGB decay. In other words, 92% of carbon stored in AGB, and 100% of BGB and DOM are transferred into the atmosphere as biogenic CO_2 . This approach is in line with the default (tier 1) assumptions of the IPCC (IPCC 2006).

For land transformation from grassland, no harvest or burning of biomass is considered. 100% of AGB and BGB carbon is transferred into the atmosphere as biogenic CO₂. DOM is considered negligible.

Land transformation from perennial to annual cropland is also accounted for, using the abovementioned "Direct Land Use Change Assessment Tool".

For all categories of vegetation, change in SOC is accounted for in land occupation, since it is associated to the following land use category (section 2.9.2). SOC-related emissions from peat drainage are included (Joosten, 2010; IPCC, 2013)

Losses of SOC are accompanied by mineralization of N, which in turn leads to emissions of N₂O. To determine the amount of N mineralization, the C:N ratio has to be known. IPCC (2006) gives a default value of 15 for the conversion of forest or grassland to cropland. For cropland the value of 11 is used (see 2.4). The emission factor for N₂O from mineralized N is 1 % (kg N2O-N/kg N) (IPCC, 2006, Tab. 11.1, EF1).

⁵ Latest edition is "WFLDB-adapted-Blonk 2014 direct-land-use-change-assessment-tool_2015-06-11a". Available upon request to Quantis. That version includes the following changes: SOC-related emissions include peat drainage emissions in the whole World, when occurring; suppression of the "set-to-zero" policy when carbon capture occurs; addition of more calculations and adaptation of the modelling structure for integration into the World Food LCA Database; correction of several crops definitions.

⁴ "Direct Land Use Change Assessment Tool", version 2014-1-21-january-2014. Available for download at www.blonkconsultants.nl

Carbon	Land transformation							
pool	From primary From secondary From perent forest forest crop		From perennial crop	From annual crop	From grassland			
AGB ⁽¹⁾	8% 92% emitte	harvested and store d (20% burned, 72%	100% emitted by decay Net carbon capture may occur in certain cases (and is taken into account)					
BGB ⁽²⁾	100% emitted by decay							
DOM ⁽³⁾	10	00% emitted by decay	Igno	red				
SOC ⁽⁴⁾	SOC change according to IPCC 2006, including peat drainage emissions. Net carbon capture may occur in certain cases (and is taken into account)							

Tab. 8: Carbon pools accounting in land transformation

(1) Aboveground biomass; (2) Belowground biomass; (3) Dead organic matter; (4) Soil organic carbon

2.9.2. Land occupation

2.9.2.1. Definition

Measured in [m²y], land occupation is calculated by multiplying the occupied area by time. Land occupation starts after the harvest of the previous crop (average harvest date) and ends with the harvest of the considered crop. If the date of the harvest of the previous crop is unknown, a period of 12 months is assumed, unless it is known that there is more than one cropping season per year. The previous crop is the last crop on the same field, where a physical product is harvested (previous main crop, catch crop for fodder or pasture) (Nemecek *et al.* 2011).

Impacts associated with land occupation result from changes in soil organic carbon (SOC) content, which results in the release of N_2O . The model is described in Nemecek *et al.* (2014) and is based on IPCC guidelines (2006).

2.9.2.2. Land management change effects on soil carbon

Within the same land use category, changes in management can occur with consequences on SOC contents. This concerns e.g. if the tillage intensity on cropland is reduced (plough \rightarrow reduced tillage \rightarrow no-till) or if organic manure is added on cropland, where no organic fertiliser was previously applied. In grassland systems, SOC can be increased by improving the management. These changes in SOC are only accounted for if there is a permanent change in management according to IPCC (2006, Table 5.5 for cropland and Table 6.2 for grassland). Land management changes are considered in the same way as for land use changes. For cropland or grassland that is continuously managed in the same way (as it is e.g. the case for grassland and pasture without changes in management intensity), no change in SOC is calculated.

2.10. Pesticide emissions

The amount of different active ingredients is entered by the user. This section describes the modelling of the pesticide emissions in the crop inventories.

In the ecoinvent database, pesticide emissions are modelled as 100% of the substance emitted to agricultural soil.

2.11. Irrigation

The water amount for irrigation is given by the user. The tool maps this information with the corresponding irrigation datasets of ecoinvent. The origin of the groundwater as well as the proportion of the emissions of water to air, to groundwater and surface water are given by the ecoinvent report on irrigation (Gmünder et al. 2019).

2.12. Carbon uptake by plants

Carbon is taken up in the form of carbon dioxide and fixed in the biomass. The carbon dioxide uptake by the growing crops is considered a resource input, which is important for the assessment of the climate change impact.

It is calculated from the carbon content of the products, which in turn can be calculated from the carbohydrate, protein, fat, fibre, and ash composition of the harvested products and the carbon contents (Nemecek & Kägi 2007, Tab. 21). The CO₂ uptake by the plant is estimated by multiplying the carbon content in the plant dry matter by the stoichiometric factor 44/12. Data on the composition of different products can be found e.g. in the USDA National Nutrient Database (http://ndb.nal.usda.gov/), Feedipedia (http://www.feedipedia.org/) or in the Swiss feed database (http://www.feed-alp.admin.ch). If no composition information is available, 47.5% is taken as default value for carbon content of dry mass (http://www.fao.org/forestry/17111/en/). If other sources than the above-mentioned are used, this will be described in the dataset-specific documentation. Carbon bound in crop residues that remain on the field is not considered as residues are decomposed and carbon is thus released.

The net release of biogenic CO_2 from biomass is included as 'Carbon dioxide, biogenic'. Only net changes of biomass stocks are considered, i.e. if the C stock in the biomass changes between the beginning and the end of the inventory period (typically a growing season).

Fraction	C-content (g/kg dry mass)	Source
		Rouwenhorst et al.
Carbohydrates	440	(1991)
		Rouwenhorst et al.
Proteins	530	(1991)
Lipids	750	Nemecek & Kägi (2007)
Fibres	440	Nemecek & Kägi (2007)
Ash	0	Nemecek & Kägi (2007)

Tab. 9: Carbon contents of different fractions of the biomass

3. References

- Batjes N.H. (2008) ISRIC-WISE Harmonized Global Soil Profile Dataset (Ver. 3.1). Report 2008/02, ISRIC – World Soil Information, Wageningen (with dataset). Available at: http://www.isric.org/isric/webdocs/docs//ISRIC_Report_2008_02.pdf?q=isric/webdocs/Docs/IS RIC_Report_2008_02.pdf.
- Bauen A., Chudziak C., Vad K. & Watson P. (2010) A causal descriptive approach to modelling the GHG emissions associated with the indirect land use impacts of biofuels. E4tech, London, UK
- Bennett J.P., Chiriboga, E., Colemann, J. & Waller, D.M (2000) Heavy metals in wild rice from northern Wisconsin, The Science of the Total Environment 246, 261-269.
- Bos U, Horn R, Beck T, et al (2016) LANCA. Characterization Factors for Life Cycle Impact Assessment, Version 2.0. Fraunhofer IBP, Stuttgart
- Bouwman A.F., Boumans L.J.M. & Batjes N.H. (2002). Modeling global annual N2O and NO emissions from fertilized fields. Global Biogeochemical Cycles, 16.
- Brandão M. & Milà i Canals L. (2012) Global characterisation factors to assess land use impacts on biotic production. International Journal of Life Cycle Assessment. doi: 10.1007/s11367-012-0381-3
- Brisson N., Gary C., Justes E., Roche R., Mary B., Ripoche D., Zimmer D., Sierra J., Bertuzzi P., Burger P., Bussière F., Cabidoche Y.M., Cellier P., Debaeke P., Gaudillère J.P., Hénault C., Maraux F., Seguin B & Sinoquet H. (2003). An overview of the crop model STICS. European Journal of Agronomy 18, 309–332.
- British Standards Institution (BSI) (2011a) The Guide to PAS 2050:2011. How to carbon footprint your products, identify hotspots and reduce emissions in your supply chain. British Standards Institution, London
- British Standards Institution (BSI) (2011b) PAS 2050:2011 specification for the assessment of the life cycle greenhouse gas emissions of goods and services. British Standards Institution, London
- Colomb V, Aït-Amar S, Basset-Mens C, Dollé JB, Gac A, Gaillard G, Koch P, Lellahi A, Mousset J, Salou T, Tailleur A, van der Werf HMG (2014) AGRIBALYSE[®]: Assessment and lessons for the future. Version 1.1. ADEME. Angers, France
- Comar V, Tilley D, Felix E, et al (2004) Comparative emergy evaluation of castorbean (ricinus communis) production systems in Brazil and the U.S. . In: Ortega E, Ulgiati S (eds) IV Biennial International Workshop "Advances in Energy Studies", June 16-19, 2004. Pages 227-237. Unicamp, Campinas, SP, Brazil,
- De Willigen P (2000) An analysis of the calculation of leaching and denitrification losses as practised in the NUTMON approach. Report 18. Plant Research International, Wageningen, The Netherlands
- Derpsch R. & Friedrich T. (2009) Development and current status of no-till adoption in the world. Proceedings on CD, 18th Triennial Conference of the International Soil Tillage Research Organisation (ISTRO), June 15–19, 2009, Izmir, Turkey
- Desaules A, Dahinden R (2000) Nationales Bodenbeobachtungsnetz Veränderungen von Schadstoffgehalten nach 5 und 10 Jahren., Schriftenr. Bern
- Desaules A. & Dahinden R. (2000) Nationales Bodenbeobachtungsnetz Veränderungen von Schadstoffgehalten nach 5 und 10 Jahren. BUWAL, Schriftenreihe Umwelt Nr. 320, 129 p.
- Desaules A. & Studer K. (1993) NABO: Nationales Beobachtungsnetz, Messresultate 1985-1991, Schriftenreihe Umwelt Nr. 200, BUWAL (Bundesamt für Umwelt, Wald und Landschaft), Bern.
- Doka G. (2007) Life Cycle Inventories of Waste Treatment Services Part IV Wastewater Treatment. ecoinvent report No. 13, Swiss Centre for Life Cycle Inventories, Dübendorf, Switzerland

- EEA (European Environment Agency) (2016) EMEP/EEA air pollutant emission inventory guidebook 2016. Copenhagen
- Eggleston H.S., Buendia, L., Miwa K., Ngara T. & Tanabe K. (Eds.) (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. IPCC National Greenhouse Gas Inventories Programme, Hayama, Japan.
- Eggleston HS, Buendia L, Miwa K, et al (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories.
- European Commission Joint Research Centre Institute for Environment and Sustainability (EU-JRC) (2010a) International Reference Life Cycle Data System (ILCD) Handbook General guide for Life Cycle Assessment Detailed guidance. First edition March 2010. EUR 24708 EN. Luxembourg. Publications Office of the European Union
- European Commission Joint Research Centre Institute for Environment and Sustainability (EU-JRC) (2010b) International Reference Life Cycle Data System (ILCD) Handbook Nomenclature and other conventions. First edition 2010. EUR 24384 EN. Luxembourg. Publications Office of the European Union
- European Commission Joint Research Centre Institute for Environment and Sustainability (EU-JRC) (2010c) Thematic Data Layers for Commission Decision of 10 June 2010 on guidelines for the calculation of land carbon stocks for the purpose of Annex V to Directive 2009/28/EC. European Soil Portal Soil Data and Information Systems. Available at: http://eusoils.jrc.ec.europa.eu/projects/RenewableEnergy
- European Commission Joint Research Centre Institute for Environment and Sustainability (EU-JRC) (2012) International Reference Life Cycle Data System (ILCD) Data Network Compliance rules and entry-level requirements. Version 1.1, 2012. EUR 24380 EN. Luxembourg. Publications Office of the European Union
- European Commission Joint Research Centre Institute for Environment and Sustainability (EU-JRC) (2015). Default approaches for cross-cutting issues for cattle related Product Environmental Footprint pilots. DRAFT final report. European Commission, Joint Research Centre, Institute for Environment and Sustainability, Sustainability Assessment Unit. Ispra, Italy
- European Environment Agency (EEA) (2006). EMEP/CORINAIR emission inventory guidebook 2006. European Environment Agency, Copenhagen, Denmark, EEA Technical report No 11 Available at http://www.eea.europa.eu.
- European Environment Agency (EEA) (2009). EMEP/EEA air pollutant emission inventory guidebook 2009 - Technical guidance to prepare national emission inventories. European Environment Agency, Luxembourg, EEA Technical report No 9/2009. Available at http://www.eea.europa.eu/publications/emep-eea-emission-inventory-guidebook-2009.
- European Environment Agency (EEA) (2013) EMEP/EEA air pollutant emission inventory guidebook 2013 - Technical guidance to prepare national emission inventories. European Environment Agency, Luxembourg, EEA Technical report No 12/2013. Available at http://www.eea.europa.eu.
- F. Scheffer (2002) Lehrbuch der Bodenkunde. Schachtschabel. 15th ed, Spektrum A. Heidelberg, Germany
- Faist Emmenegger M., Reinhard J. & Zah R. (2009) Sustainability Quick Check for Biofuels intermediate background report. With contributions from T. Ziep, R. Weichbrodt, Prof. Dr. V. Wohlgemuth, FHTW Berlin and A. Roches, R. Freiermuth Knuchel, Dr. G. Gaillard, Agroscope Reckenholz-Tänikon. Dübendorf, Switzerland.
- FAO (1989) Irrigation Water Management: Irrigation Scheduling. Training manual no. 4, Annex I: Irrigation efficiencies. Land and Water Development Division, Food and Agriculture Organization of the United Nations, Rome, Italy. http://www.fao.org/docrep/T7202E/t7202e08.htm
- FAO (2001) Global Ecological Zoning for the Global Forest Resources Assessment 2000. Forestry

Department, Food and Agriculture Organization of the United Nations. Rome, Italy.

- FAO (2010) Grrenhouse Gas Emissions from the Dairy Sector A Life Cycle Assessment. Animal Production and Health Division, Food and Agriculture Organization of the United Nations. Online. Rome, Italy.
- FAO (2011) Crop water information. Natural Resources and Environment Department, Food and Agriculture Organization of the United Nations. Online, accessed February 2011. Available at: http://www.fao.org/nr/water/cropinfo.html.
- FAO Ecocrop. http://ecocrop.fao.org/ecocrop/srv/en/cropFindForm.
- FAOSTAT (2012) Agriculture data. Food and Agriculture Organization of the United Nations. http://faostat.fao.org/. Accessed January 2014
- Flisch, R., Sinaj, S., Charles, R. & Richner, W. (2009). GRUDAF 2009 Grundlagen für die Düngung im Acker und Futterbau. Agrarforschung 16 (2), 1-97.
- FOAG (2014). Pflanzenschutzmittelverzeichnis. Swiss Federal Office for Agriculture (FOAG), Bern,
- FOEN (2013). Switzerland's Greenhouse Gas Inventory 1990–2011. Swiss Federal Office for the Environment (FOEN), Bern, 486 p., Available at www.bafu.admin.ch/climate.
- Freiermuth R (2006) Modell zur Berechnung der Schwermetallflüsse in der landwirtschaftlichen Ökobilanz. SALCA-Schwermetall. Agroscope FAL Zürich-Reckenholz, Zürich-Reckenholz
- Frischknecht R., Jungbluth N., Althaus H.-J., Doka G., Heck T., Hellweg S., Hischier R., Nemecek T., Rebitzer G., Spielmann M., Wernet G. (2007) Overview and Methodology. ecoinvent report No.
 1. Swiss Centre for Life Cycle Inventories, Dübendorf, 2007
- Fritsche U.R., Hennenberg K. & Hünecke K. (2010) The "iLUC Factor" as a Means to Hedge Risks of GHG Emissions from Indirect Land Use Change Working Paper. Darmstadt, Germany
- Gac A., Laspière P.T., Scislowski V., Lapasin C., Chevillon P., Guardia S., Ponchant P., Nassy G. (2012). Recherche de méthodes d'évaluation de l'expression de l'empreinte carbone des produits viande. Report Institut de l'Elevage, IFIP, ITAVI, ADIV, FranceAgriMer, 128 p.
- Gnansounou E., Dauriat A., Villegas J. & Panichelli L. (2009) Life cycle assessment of biofuels: energy and greenhouse gas balances. Bioresource Technology 100:4919–30. doi: 10.1016/j.biortech.2009.05.067
- HAFL (2013). Technische Parameter Modell Agrammon. Hochschule für Agrar-, Forst- und Lebensmittelwissenschaften, Zollikofen, 19 p., Available at www.agrammon.ch.
- Hillier J., Walter C., Malin D., Garcia-Suarez T., Mila-i-Canals L. & Smith P. (2011). A farm-focused calculator for emissions from crop and livestock production. Environmental Modelling & Software, 26: 1070-1078.
- Houba V.J.G. & Uittenbogaard J. (1994) Chemical composition of various plant species. International Plant-Analytical Exchange (IPE). Department of Soil Science and Plant Nutrition, Wageningen Agricultural University, The Netherlands.
- Houba V.J.G. & Uittenbogaard J. (1995) International Plant-Analytical Exchange, Report 1995. International Plant-Analytical Exchange (IPE). Department of Soil Science and Plant Nutrition, Wageningen Agricultural University The Netherlands.
- Houba V.J.G. & Uittenbogaard J. (1996) International Plant-Analytical Exchange, Report 1996. International Plant-Analytical Exchange (IPE). Department of Soil Science and Plant Nutrition, Wageningen Agricultural University The Netherlands.
- Houba V.J.G. & Uittenbogaard J. (1997) International Plant-Analytical Exchange, Report 1997. International Plant-Analytical Exchange (IPE). Department of Soil Science and Plant Nutrition, Wageningen Agricultural University The Netherlands.
- Houghton R.A., Skole D.L., Nobre C.A., Hackler J.L., L.K.T. & C.W.H. (2000). Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon. Nature 403: 301-304.
- ICID (2012) Sprinkler and micro irrigated area in the World. International Commission on Irrigation and Drainage. http://www.icid.org/icid_data.html

- International Dairy Federation (IDF) (2015). A common carbon footprint approach for Dairy. The IDF guide to standard life cycle assessment methodology for the dairy sector. Brussels, Belgium
- International Energy Agency (IEA) (2011). Electricity and heat statistics. http://www.iea.org/statistics/topics/electricity/
- IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, forestry and other land use. IGES, Kanagawa, Japan.
- IPCC (2006a) Guidelines for national greenhouse gas inventories. Volume 4: Agriculture, forestry and other land use. Kanagawa
- IPCC (2006b) Volume 4: Agriculture, Forestry and Other Land Use (AFOLU).
- IPCC (2013). Adoption and acceptance of the "2013 supplement to the 2006 guidelines: Wetlands" (Vol. 2). Geneva, Switzerland.
- ISO (2006a). Environmental management life cycle assessment principles and framework. ISO 14040:2006. International Organization for Standardization. Geneva, Switzerland.
- ISO (2006b). Environmental management life cycle assessment requirements and guidelines. ISO 14044:2006. International Organization for Standardization. Geneva, Switzerland.
- ISO (2014) ISO 14046 International Standard Environmental management Water footprint Principles, requirements and guidelines, International Organization for Standardization, Geneva, Switzerland
- Joosten, H. (2010). The Global Peatland CO2 Picture. Peatland status and drainage related emissions in all countries of the world. Ede, The Netherlands.
- Keller T. & Desaules A. (2001) Böden der Schweiz: Schadstoffgehalte und Orientierungs-werte (1990 1996). Umwelt-Materialien Nr. 139. Bern: Bundesamt für Umwelt, Wald und Landschaft BUWAL.
- Koch P, Salou T, Colomb V, et al (2014) AGRIBALYSE [®] : RAPPORT METHODOLOGIQUE Version 1.2.
- Koellner T, Baan L, Beck T, et al (2013) UNEP-SETAC guideline on global land use impact assessment on biodiversity and ecosystem services in LCA. Int J Life Cycle Assess 18:1188–1202. doi: 10.1007/s11367-013-0579-z
- Koellner T, de Baan L, Beck T, et al (2012) Principles for life cycle inventories of land use on a global scale. Int J Life Cycle Assess 1–13. doi: 10.1007/s11367-012-0392-0
- Koellner T., de Baan L., Beck T., Brandão M., Civit B., Goedkoop M., Margni M., Milà i Canals L., Müller-Wenk R., Weidema B. & Wittstock B. (2012) Principles for life cycle inventories of land use on a global scale. International Journal of Life Cycle Assessment. doi: 10.1007/s11367-012-0392-0
- Koellner T., de Baan L., Beck T., Brandão M., Civit B., Margni M., Milà i Canals L., Saad R., Maia de Souza D. & Müller-Wenk R. (2013) UNEP-SETAC guideline on global land use impact assessment on biodiversity and ecosystem services in LCA. International Journal of Life Cycle Assessment 18:1188–1202. doi: 10.1007/s11367-013-0579-z
- Kühnholz O. (2001) Schwermetalle in der Ökobilanz von landwirtschaftlichen Produktionssystemen. Internal Report, FAL, 58p.
- Lapola DM, Schaldach R, Alcamo J, et al (2010) Indirect land-use changes can overcome carbon savings from biofuels in Brazil. Proc Natl Acad Sci U S A 107:3388–93. doi: 10.1073/pnas.0907318107
- Laura Rubio, Gmünder S, Bunge JE, et al (2017) Water supply data in ecoinvent; Background Report.
- LEAP (2014) Environmental performance of animal feeds supply chains: Guidelines for quantification. Livestock Environmental Assessment and Performance Partnership. FAO, Rome, Italy
- Lévová T. & Pfister S. (2012). Good practice for life cycle inventories modeling of water use, Swiss Centre for Life Cycle Inventories, Dübendorf, Switzerland
- Menzi H, Kessler J (1998) Heavy metal content of manures in Switzerland. In: Martinez J. and Maudet M.N. (eds): Proc. 8th International Conference on the FAO ESCORENA.

- Menzi H. & Kessler J. (1998) Heavy metal content of manures in Switzerland. In: Martinez J. and Maudet M.N. (eds): Proc. 8th International Conference on the FAO ESCORENA.
- Milà i Canals L., Muñoz I., Hospido A., Plassmann K., McLaren S.J., Edwards-Jones G. & Hounsome B. (2008) Life Cycle Assessment (LCA) of Domestic vs. Imported Vegetables. Case studies on broccoli, salad crops and green beans. CES Working Papers 01/08
- Milà i Canals L., Rigarlsford G. & Sim S. (2012) Land use impact assessment of margarine. The International Journal of Life Cycle Assessment: 1-13.
- Mishra H.S., Rathore T.R. & Pant R.C. (1997) Root growth, water potential, and yield of irrigated rice. Irrigation Science 17, 69-75.
- N.H.Batjes (2008) ISRIC-WISE Harmonized Global Soil Profile Dataset (Ver. 3.1). Report 2008/02, ISRIC
 World Soil Information, Wageningen (with dataset). Available at: http://www.isric.org/isric/webdocs/docs//ISRIC_Report_2008_02.pdf?q=isric/webdocs/Docs/IS RIC_Report_2008. Wageningen
- Nassar AM, Harfuch L, Bachion LC, Moreira MR (2011) Biofuels and land-use changes: searching for the top model. Interface Focus 1:224–32. doi: 10.1098/rsfs.2010.0043
- Nemecek T, Bengoa X, Lansche J, et al (2015) Methodological Guidelines for the Life Cycle Inventory of Agricultural Products, Version 3.0. 84.
- Nemecek T. & Kägi T. (2007) Life Cycle Inventories of Swiss and European Agricultural Production Systems. Final report ecoinvent V2.0 No. 15a. Agroscope Reckenholz-Taenikon Research Station ART, Swiss Centre for Life Cycle Inventories, Zurich and Dübendorf, Switzerland, retrieved from: www.ecoinvent.ch
- Nemecek T., Gaillard G., Freiermuth, R., Antón A., Wilfart-Monziols A., Hermansen J. (2011) ecoinvent V3.0 - Good practice for life cycle inventories in agriculture (plant and animal production). Version: 1.4 – June 2011. Agroscope Reckenholz-Taenikon Research Station ART, Swiss Centre for Life Cycle Inventories, Zurich and Dübendorf, Switzerland
- Nemecek T., Schnetzer J., Reinhard J. (2014) Updated and harmonised greenhouse gas emissions for crop inventories. International Journal of Life Cycle Assessment, Published online: 20 February 2014.
- Nemecek T., Weilera K., Plassmann, K., Schnetzera J., Gaillard G., Jefferies D., García–Suárez T., King H., Milà i Canals L. (2012) Estimation of the variability in global warming potential of worldwide crop production using a modular extrapolation approach. Journal of Cleaner Production 31, 106-117.
- Nguyen, T.T.H., van der Werf, H.M.G. (2013). Comparaison de différentes méthodes d'allocation pour les matières premières utilisées en alimentation animale. Effets sur les résultats d'Analyse du Cycle de Vie. Report INRA, 45 p.
- Notarnicola, B., K. Hayashi, M. A. Curran and D. Huisingh (2012). "Progress in working towards a more sustainable agri-food industry." Journal of Cleaner Production 28: 1-8.
- Panagos, P., Meusburger, K., Ballabio, C., Borrelli, P., Alewell, C. (2014). Soil erodibility in Europe: A high-resolution dataset based on LUCAS. Science of the total environment 479-480, 189-200.
- Pfister S., Bayer P., Koehler A. & Hellweg S. (2011) Environmental impacts of water use in global crop production: hotspots and trade-offs with land use. Environmental Science & Technology 45, 5761–5768.
- Prasuhn V (2006) Erfassung der PO4-Austräge für die Ökobilanzierung SALCA Phosphor.
- Prasuhn V. (2006). Erfassung der PO4-Austräge für die Ökobilanzierung SALCA-Phosphor. Agroscope FAL Reckenholz, Zürich, 22 p., Available at www.agroscope.admin.ch.
- Renard K.G. & Freimund J.R., 1994. Using monthly precipitation data to estimate the R factor in the revised USLE. Journal of Hydrology, 157: 287-306.
- Richner W., Oberholzer H.R., Freiermuth Knuchel R., Huguenin O., Ott S., Nemecek T. & Walther U. (2014) Modell zur Beurteilung der Nitratauswaschung in Ökobilanzen SALCA-NO3, Agroscope

Science No. 5, 28p. Available at www.agroscope.admin.ch.

- Roches, A., Nemecek, T., Gaillard, G., Plassmann, K., Sim, S., King, H., Milà i Canals, L. (2010) MEXALCA: a modular method for the extrapolation of crop LCA. International Journal of Life Cycle Assessment 15, 842-854.
- Rosenbaum R.K., Anton A., Bengoa X., Bjørn A., Brain R., Bulle C., Cosme N., Dijkman T.J., Fantke P., Felix M., Geoghegan T.S., Gottesbüren B., Hammer C., Humbert S., Jolliet O., Juraske R., Lewis F., Maxime D., Nemecek T., Payet J., Räsänen K., Roux P., Schau E.M., Sourisseau S., van Zelm R., von Streit B., Wallman M. (2015) The Glasgow consensus on the delineation between pesticide emission inventory and impact assessment for LCA. International Journal of Life Cycle Assessment 20, 785-776.
- Rouwenhorst R.J., Jzn J.F., Scheffers W.A., van Dijken J.P. 1991. Determination of protein concentration by total organic carbon analysis. J Biochem and Biophys Methods, 22: 119-128.
- Roy R. N., Misra R.V., Lesschen J.P. & Smaling E.M. (2003). Assessment of soil nutrient balance: approaches and methodologies. Food and Agriculture Organization of the United Nations. Rome, Italy.
- Roy RN, Misra R V, Lesschen JP, Smaling EM (2003) Assessment of soil nutrient balance: Approaches and Methodologies. FAO, FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS, Rome
- Saarinen, M., S. Kurppa, Y. Virtanen, K. Usva, J. Makela and A. Nissinen (2012). "Life cycle assessment approach to the impact of home-made, ready-to-eat and school lunches on climate and eutrophication." Journal of Cleaner Production 28: 177-186
- Scheffer F. (2002) Lehrbuch der Bodenkunde / Scheffer/Schachtschabel. 15th ed, Spektrum Akademischer Verlag, Heidelberg, Germany.
- Schmid M., Neftel A. & Fuhrer J. (2000) Lachgasemissionen aus der Schweizer Landwirtschaft. Schriftenreihe der FAL 33, 131 p.
- Schmidt JH (2008) System delimitation in agricultural consequential LCA. Int J Life Cycle Assess 13:350–364. doi: 10.1007/s11367-008-0016-x
- Searchinger T, Heimlich R, Houghton RA, et al. (2008) Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change. Science (80-) 319:1238–1240. doi: 10.1126/science.1151861
- Shaffer, K.H. (2008) Consumptive water use in the Great Lakes Basin: U.S. Geological Survey Fact Sheet 2008–3032, 6 p.
- Siebert S., Burke J., Faures J.M., Frenken K., Hoogeveen J., Döll, P. & Portmann F.T. (2010) Groundwater use for irrigation – a global inventory. Hydrol. Earth Syst. Sci., 14, 1863–1880.
- Smajstrla A.G., Castro B.F. & Clark G.A. (2002) Energy Requirements for Drip Irrigation of Tomatoes in North Florida. BUL 289, Agricultural and Biological Engineering Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida
- Sonesson U., Janestad H. and Raaholt B. (2003) Energy for Preparation and Storing of Food Models for calculation of energy use for cooking and cold storage in households. 709 2003, 1-56. 2003. SIK, Gothenburg, Sweden
- Spracklen D V., Arnold SR, Taylor CM (2012) Observations of increased tropical rainfall preceded by air passage over forests. Nature. doi: 10.1038/nature11390
- Statistics Canada (2007) Industrial Water Use, Statistics Canada, Accessed: 10/06/2011, URL:http://www.statcan.gc.ca/pub/16-401-x/16-401-x2010001-eng.pdf
- Sylvester-Bradley R. (2008) Critique of Searchinger (2008) & related papers assessing indirect effects of biofuels on land-use change. Boxworth, UK
- Tailleur A., Cohan JP., Laurent F. and Lellahi A. (2012). A simple model to assess nitrate leaching from annual crops for life cycle assessment at different spatial scales. In: Corson M.S., van der Werf H.M.G. (Eds), Proceedings of the 8th International Conference on Life Cycle Assessement in the

Agri-Food Sector (LCA Food 2012), 1-4 October 2012, Saint-Malo, France. INRA, Rennes France. p. 903-904.

- Teherani, D.K. (1987). Trace elements analysis in rice. Journal of Radioanalytical and Nuclear Chemistry 117 (3).
- Tipper R., Hutchison C. & Brander M. (2009) A Practical Approach for Policies to Address GHG Emissions from Indirect Land Use Change Associated with Biofuels. Technical paper TP-080212-A. ecometrica and Greenergy.
- Torrellas M, Antón A, López JC, Baeza EJ, Pérez Parra J, Muñoz P, Montero JI (2012) LCA of a tomato crop in a multi-tunnel greenhouse in Almeria. Int J Life Cycle Assess (2012) 17:863–875
- Umweltbundesamt (2013). Austria's National Inventory Report 2013. Umweltbundesamt, Vienna, 776 p., Available at www.umweltbundesamt.at/fileadmin/site/publikationen/REP0416.pdf.
- United States Department of Agriculture (USDA) (1999) Soil Taxonomy. A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Agriculture Handbook. Number 436, United States Department of Agriculture Natural Resources Conservation Service.
- University of Arkansas (2007). Soil and Water Management, Rice Irrigation Pumping costs.
- Vionnet S., Lessard L., Offutt A., Lévová T. & Humbert S. (2012) Quantis Water Database Technical Report v1. Quantis, Lausanne, Switzerland
- von Steiger B. & Baccini P. (1990) Regionale Stoffbilanzierung von landwirtschaftlichen Böden mit messbarem Ein- und Austrag. Nationales Forschungsprogramm 22, Boden.
- Weidema B.P., Bauer C., Hischier R., Mutel C., Nemecek T., Reinhard J., Vadenbo C.O., Wernet G. (2013). Overview and methodology. Data quality guideline for the ecoinvent database version 3. Ecoinvent Report 1(v3). St. Gallen: The ecoinvent Centre
- Wernet G, Bauer C, Steubing B, et al (2016) The ecoinvent database version 3 (part I): overview and methodology. Int J Life Cycle Assess 21:1218–1230. doi: 10.1007/s11367-016-1087-8
- Wilke B. & Schaub D. (1996) Phosphatanreicherung bei Bodenerosion. Mitt. Deutsche Bodenkundl. Gesellsch. 79, 435-438.
- Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses a guide to erosion planning. U.S. Department of Agriculture, Agriculture Handbook No. 537
- Wolfensberger U. & Dinkel F. (1997) Beurteilung nachwachsender Rohstoffe in der Schweiz in den Jahren 1993-1996, FAT und Carbotech, im Auftrag des Bundesamtes für Landwirtschaft, Bern.

4. Annex 1

	Country code	Clay content (per country)	Soil carbon content (per country)	Comment
Unit		ratio	ratio	
Argentina	AR	0.29247	0.0148	
Australia	AU	0.25492	0.0063	
Belgium	BE	0.30818	0.0132	
Brazil	BR	0.43738	0.0121	
Canada	CA	0.31124	0.0428	
Chile	CL	0.30655	0.0223	
China	CN	0.29491	0.0229	mean of other values
Colombia	со	0.36683	0.0382	
Costa Rica	CR	0.36521	0.033	
Cote D'Ivoire	CI	0.47407	0.0089	
Ecuador	EC	0.33147	0.0212	
Finland	FI	0.34541	0.1103	
France	FR	0.30442	0.0142	
Germany	DE	0.30706	0.0301	
Ghana	GH	0.46786	0.0088	
Hungary	HU	0.27927	0.0239	
India	IN	0.34684	0.0088	
Indonesia	ID	0.39316	0.0521	
Israel	IL	0.3	0.0096	
Italy	ІТ	0.30108	0.011	
Kenya	KE	0.34303	0.009	
Mexico	МХ	0.30542	0.0301	
Morocco	MA	0.3947	0.0229	mean of other values
Netherlands	NL	0.32704	0.0637	
New Zealand	NZ	0.32865	0.0185	
Peru	PE	0.33821	0.0163	
Philippines	РН	0.45679	0.0128	
Poland	PL	0.30054	0.034	

Russian Federation	RU	0.32389	0.0389	
Serbia	CS	0.458	0.0229	mean of other values
South Africa	ZA	0.2911	0.0058	
Spain	ES	0.30089	0.0125	
Sri Lanka	LK	0.35741	0.0088	
Switzerland	СН	0.31333	0.0209	
Thailand	тн	0.47025	0.0101	
Turkey	TR	0.308	0.0098	
Ukraine	UA	0.30702	0.0233	
United States	US	0.33275	0.0152	
Vietnam	VN	0.44673	0.0126	

5. Annex 2

	Rooting depth (per crop)
Unit	m
Almond	1.5
Apple	1.5
Apricot	1.5
Green asparagus	0.5
White asparagus	0.5
Banana	1.5
Bell pepper	0.6
Blueberry	0.45
Cabbage red	0.25
Cabbage white	0.25
Carrot	0.5
Cashew	1.5
Cassava	0.5
Castor bean	1.5
Chick pea	1.5
Chilli	0.8
Сосоа	2
Coconut	1.5
Coffee arabica	1.2
Coffee_robusta	1.2
Coriander	0.33
Cotton	1.35
Cranberry	0.9
Eggplant	0.8
Flax	0.5
Ginger	0.275
Grape	1.5
Guar	0.5
Hemp	0.5

Lemon	1.5
Citrus lime	1.5
Lentil	0.5
Linseed	0.9
Maize grain	1.35
Mandarin	1.5
Mango	1
Mint	0.5
Mulberry	1
Oat	1.2
Olive	1.5
Onion	0.5
Orange fresh grade	1.5
Orange processing grade	1.5
Palm tree	1
Peach	1.5
Peanut	0.5
Pear	1.5
Pearl millet	1.5
Pineapple	0.5
Pomegranate	1
Potato	0.3
Rapeseed	0.9
Raspberry	0.9
Rice	0.6
Sesame seed	0.6
Soybean	0.95
Strawberry fresh grade	0.45
Strawberry processing grade	0.45
Sugar beet	0.9
Sugar cane	1.5
Sunflower	1.35
Sweet corn	1.35
Теа	1.2
Tomato fresh grade	1

Tomato processing grade	1
Turmeric	0.45
Wheat	0.7

Sources: (FAO), <u>http://files.hawaii.gov/dlnr/cwrm/publishedreports/PR200808.pdf</u>, for castor bean: (Comar et al. 2004), Coriander: <u>http://veggieharvest.com/herbs/cilantro.html</u>, , Ginger: http://veggieharvest.com/herbs/ginger.html

6. Annex 3: nitrogen uptake

Crop	Country	Value (kg / ha)
banana	IN	70.8
banana	GLO	73.2
bellpepper	IN	150.00
bellpepper	GLO	150.00
cabbage_red	IN	247.00
cabbage_red	GLO	247.00
cabbage_white	IN	247.00
cabbage_white	GLO	247.00
cashew	IN	100.00
cashew	GLO	100.00
cassava	IN	100.00
cassava	GLO	100.00
castor_beans	GLO	30.0
chick_pea	IN	36.95
chick_pea	GLO	36.95
chilli	IN	150.00
chilli	GLO	150.00
coriander	IN	54.9
coriander	GLO	54.9
cotton	IN	41.04
cotton	GLO	41.04
eggplant	IN	180.00
eggplant	GLO	180.00
flax	GLO	25.00
ginger	IN	92.26

ginger	GLO	92.26
grape	IN	30.00
grape	GLO	30.00
guar	IN	45.00
guar	GLO	45.00
lemon	MX	41.24
lentil	IN	0.0
lentil	GLO	0.0
mango	IN	120.00
mango	GLO	120.00
mint	IN	160
mint	GLO	227
mulberry	IN	400.00
mulberry	GLO	400.00
onion	GLO	75.7
peanut	IN	91.8
peanut	GLO	180.2
pearl_millet	IN	84.3
pearl_millet	GLO	59.6575
potato	IN	77.1
potato	GLO	79.3
rice	IN	64.5
rice	GLO	94.4
sesame_seed	IN	35.0
sesame_seed	GLO	35.0
sugarcane	IN	121.0
sugarcane	GLO	121.0
turmeric	IN	42.5
turmeric	GLO	42.5